A Liapunov-schmidt Reduction for Time-periodic Solutions of the Compressible Euler Equations

نویسنده

  • ROBIN YOUNG
چکیده

Following the authors’ earlier work in [9, 10], we show that the nonlinear eigenvalue problem introduced in [10] can be recast in the language of bifurcation theory as a perturbation of a linearized eigenvalue problem. Solutions of this nonlinear eigenvalue problem correspond to time periodic solutions of the compressible Euler equations that exhibit the simplest possible periodic structure identified in [9]. By a Liapunov-Schmidt reduction we establish and refine the statement of a new infinite dimensional KAM type small divisor problem in bifurcation theory, whose solution will imply the existence of exact time-periodic solutions of the compressible Euler equations. We then show that solutions exist to within an arbitrarily high Fourier mode cutoff. The results introduce a new small divisor problem of quasilinear type, and lend further strong support for the claim that the time-periodic wave pattern described at the linearized level in [10], is physically realized in nearby exact solutions of the fully nonlinear compressible Euler equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Bounded Solutions of Linear and Nonlinear Evolution Equations: Homoclinics of a Beam Equation*

The objective of this paper is to discuss the existence, bifurcation, and regularity, with respect to time and parameters, of bounded solutions of infinite dimensional equations. As an application of our results, we study homoclinic solutions of a nonlinear equation. Chow et al. [2, 31, using the Liapunov-Schmidt method, studied periodic and homoclinic solutions of j; + g(x) = -1f + pf(t), wher...

متن کامل

Time-Periodic Linearized Solutions of the Compressible Euler Equations and a Problem of Small Divisors

It has been unknown since the time of Euler whether or not time-periodic sound wave propagation is physically possible in the compressible Euler equations, due mainly to the ubiquitous formation of shock waves. The existence of such waves would confirm the possibility of dissipation free long distance signaling. Following our work in [27], we derive exact linearized solutions that exhibit the s...

متن کامل

A Paradigm for Time-periodic Sound Wave Propagation in the Compressible Euler Equations∗

We formally derive the simplest possible periodic wave structure consistent with time-periodic sound wave propagation in the 3 × 3 nonlinear compressible Euler equations. The construction is based on identifying the simplest periodic pattern with the property that compression is counter-balanced by rarefaction along every characteristic. Our derivation leads to an explicit description of shock-...

متن کامل

LINEAR WAVES THAT EXPRESS THE SIMPLEST POSSIBLE PERIODIC STRUCTURE OF THE COMPRESSIBLE EULER EQUATIONS∗ Dedicated to Professor James Glimm on the occasion of his 75th birthday

In this paper we show how the simplest wave structure that balances compression and rarefaction in the nonlinear compressible Euler equations can be represented in a solution of the linearized compressible Euler equations. Such waves are exact solutions of the equations obtained by linearizing the compressible Euler equations about the periodic extension of two constant states separated by entr...

متن کامل

Inviscid Compressible Flow in Meridional Plane of an Axial Flow Compressor

In this paper it is attempted to investigate the behavior of an inviscid flow in the meridional plane of an axial flow compressor. For this purpose the 3-D unsteady Euler equations in cylindrical coordinate are averaged in tangential direction. Therefore, the equations are reduced to a 2-D system. By averaging the tangential component of momentum equation, a blade force will result. Axial and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008